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Abstract. In 3D animation, group intelligence algorithms are often required to con-
trol group behaviour in order to improve the efficiency and fidelity of the animation.
However, the group motion trajectory needs to satisfy both consistency and individual
independence, which places high demands on the group intelligence algorithm. Compared
with traditional intelligent algorithms, the convergence ability and convergence efficiency
of the gravitational search algorithm are significantly higher. Therefore, this paper pro-
poses to improve the gravitational search algorithm and apply it to the path planning of
3D group animation characters. The proposed method can generate the motion paths of
the group; thus realistic animation-aided design can be achieved. Firstly, a combinatorial
chaotic mapping is used to generate the initial group for the behavioural characteristics of
the group, which improves the group diversity. Secondly, the particle update formulation
is improved using an adaptive movement strategy to enhance the ability of the gravi-
tational search algorithm to jump out of the local optimum. Then, real-time collision
detection and collision avoidance methods are introduced to solve the individual collision
problem. Finally, the path data are imported into Maya software for group motion sim-
ulation tests. The experimental results show that the proposed algorithm can realistically
simulate large-scale group motion, which greatly improves the efficiency of creating group
animation motion paths and is suitable for various complex animation scenes.
Keywords: group animation; path planning; gravitational search algorithm; chaotic
mapping; collision avoidance

1. Introduction. Group animation, short for group behavioural animation, is an ani-
mation that simulates the behaviour of a group of organisms in a particular environment
[1,2,3]. In 2022, Ma et al. [4] solved this problem by proposing behavioural animation,
based on the principle that complex animations of groups can be generated automatically
by the simple behaviour of each individual and the interaction between individuals. In
nature, many species of animals always survive in groups. There are many animals that
live in groups like sheep and cattle, such as bee colonies, bird colonies, ant colonies and
so on. Each animal in a colony is an individual, but the individuals make up the whole.
Through simple group decisions they can generate great power against external threats.
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In recent years, group animation has been used extensively in the fields of computer
graphics, virtual reality, public safety, film and television technology, and especially in
virtual reality. Large-scale group animation in film scenes can create stunning visual ef-
fects. Group animation has become an integral part of today’s film production. Humans
are the most complex and independent intelligences in nature [5,6,7]. There is a clear di-
versity of human behaviour in everyday life. Each person has a different personality and
behavioural style. Therefore, how to realistically simulate the behaviour of people in a
realistic environment has been the focus of research in virtual reality technology. Virtual
cities enable rational planning of buildings and various facilities.
The simulation of group behaviour in animals in a computer is called group animation
and requires making each individual have the same behavioural patterns and goals [8,9].
A group behaviour model, is an abstract and mathematical description of the behavioural
characteristics of a group in the real world. Group animation has been widely used in
games, film and television animation, military and so on, and it brings people a stunning
sensory experience. However, the more individuals there are in a group animation, the
more time and effort is consumed by traditional production methods. This is due to the
fact that individual behaviour is involuntary, limited and inflexible. Therefore, the be-
haviour of the individuals in a group needs to be regular and random. The design of path
planning methods in group animation has been a hot topic of research for many years
[10].
Compared to traditional intelligent algorithms, the convergence capability and conver-
gence efficiency of the gravitational search algorithm(GSA) is significantly higher. There-
fore, this paper proposes to improve GSA and use it for path planning of 3D group
animation characters to generate individual motion paths to achieve realistic animation-
assisted design. The path data of the proposed algorithm is tested in Maya software for
collision and group clustering and verified to be effective. The simulation results show that
the proposed algorithm allows individuals to automatically overcome inter-group collision
problems and blocking problems during group motion.

1.1. Related Work. The study of group behaviour animation simulation techniques has
a long history in computer graphics [11]. Group motion simulation models can be divided
into macroscopic and microscopic models for different requirements of individual detail.
Macro studies aim to simulate large-scale group behaviour in real time [12]. A global
perspective is taken to extract the common characteristics of a large-scale group and to
ignore the description of individual behavioural details in the group. Micro studies treat
each person in a group as an individual and give each individual an independent charac-
ter, thinking and position. Each individual’s response to the same thing may reflect great
variability because each individual’s position is independent of the other [13].
Duives et al. [14] proposed a macroscopic crowd movement model based on continuum
dynamics. Jiang [15] studied the aggregation characteristics of pedestrians and proposed a
macroscopic pedestrian simulation model containing several adjustable parameters, such
as average pedestrian speed, pedestrian density and pedestrian flow. The macroscopic
crowd simulation model considers the crowd from a holistic perspective. The macroscopic
crowd simulation model sets the same movement characteristics for each individual in the
crowd, which can effectively describe the global crowd movement state as a whole, and has
a low requirement for computer resources. However, the macroscopic crowd simulation
model has difficulty in representing the interactions between each individual in the group
and therefore cannot accurately describe the random movement of different individuals
when they encounter obstacles. It can be seen that the macroscopic crowd behaviour
simulation model is not well suited to the application.
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Due to the above shortcomings of macroscopic crowd simulation models, microscopic
crowd simulation models have become the focus of simulation research in recent years.
In contrast to macroscopic crowd motion models, microscopic crowd motion models treat
each person as an individual. Currently, the main microscopic crowd movement models
are magnetic field models [16], metacellular automata models [17], queueing theory models
[18] and group intelligence models [19]. Collectively, the crowd intelligence model takes
into account more comprehensive factors and can simulate the crowd movement process
well.
As the application of swarm animation becomes more and more widespread, research on
swarm path planning is also increasingly developed. Youssef et al. [20] used genetic algo-
rithms to make simulated annealing algorithms more adaptive. To address the problem
that swarm algorithms tend to fall into local optimum, Meshkati and Safi-Esfahani [21]
proposed a swarm algorithm based on particle swarm optimisation, which has greatly
improved in convergence speed, accuracy and robustness. Tirkolaee et al. [22] proposed
an adaptive weighted artificial fish swarm algorithm for the premature convergence prob-
lem of path planning. Dulam et al. [23] used an adaptive weighted artificial fish swarm
algorithm by modelling the process of panic generation and contagion under disaster sit-
uations, a new crowd simulation method was proposed. Wang et al. [24] proposed a path
planning method combining data-driven and deep reinforcement learning that not only
simulates the movement behaviour of real crowds, but also flexibly adapts to the dynamic
changes of simple scenarios. Thilagavathi and Thanamaniet [25] proposed a crowd intel-
ligence algorithm based on the firefly algorithm. Sharma et al. [26] proposed a crowd
animation simulation method based on the cuckoo search algorithm (CSA) to improve
the intelligence of behaviour control.
Artificial intelligence algorithms have evolved over the decades and a large number of ad-
vanced algorithms have emerged in addition to classical algorithms such as particle swarm
(PSO) [27]. Current features of group behaviour in group animation include.

(1) Simplicity: each individual intelligence in the whole is relatively simple.
(2) Robustness: the overall group behaviour is largely unaffected by changes in indi-

vidual behaviour.
(3) Self-organisation: In a group, the movement of individuals may appear random,

but as a whole, it is consistent.
(4) Independence: Each individual in the group is independent of each other and be-

haves differently.
However, as application scenarios become more complex and diverse, the best performing
algorithms cannot be used to solve all problems, so targeted improvement measures are
constantly required to better solve the various problems that arise. Therefore, this work
delves into the gravitational search algorithm. Compared to traditional intelligent algo-
rithms such as PSO and CSA, the convergence capability and convergence efficiency of
the gravitational search algorithm have significant advantages. While retaining the strong
performance of the gravitational search algorithm, this work improves it.

1.2. Motivation and contribution. Although path planning methods for groups in 3D
animation have been refined over the years, there are still some shortcomings, for example.

(1) The group animation process is less efficient. In traditional animation, each indi-
vidual in a group has to plan a route, and the individuals in these routes cannot collide
with each other. The traditional animation method is more laborious.

(2) The path planning process lacks interaction. While the designer considers the paths
of individuals to achieve collision avoidance, he does not consider the interaction between
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the group and the virtual environment and between the group and the group, resulting
in a lack of realism in the movement of the group.

(3) Higher requirements for computing resources equipment. The 3D group animation
production process requires high-end CPU processors and graphics cards to make more
accurate and realistic animation effects, but also greatly increases the production costs
[28].
The main focus of this work is on how to solve the group motion blockage and individual
collision problems while ensuring the realism and efficiency of group animation. To solve
these problems, some group intelligence algorithms need to be further investigated. In
contrast to other approaches, group intelligence algorithms have their origins in the simu-
lation of animal evolution and competitive behaviour in nature. It has a strong advantage
in solving various process arrangement and behavioural route planning problems. Grav-
itational search algorithm, as one of the hot research group intelligence algorithms, has
strong global search capability and convergence speed. Therefore, this paper improves
the gravitational search algorithm and applies it to the path planning of 3D group ani-
mation characters in order to achieve realistic group animation behaviour control. The
main contributions of this work are shown as follow:

(1) Combinatorial chaotic mapping is used to generate initial groups for group be-
havioural characteristics and to improve group diversity.

(2) The particle update formula is improved using an adaptive shift strategy to improve
the ability of the gravitational search algorithm to jump out of the local optimum, laying
a better foundation for subsequent group animation path planning.

(3) Real-time collision detection and collision avoidance methods are introduced to solve
the individual collision problem. Finally, the path data were imported into Maya software
for group motion simulation tests. Modelling was carried out in the Maya environment
and the experimental effects of the improved gravitational search algorithm were analysed
so as to verify its effectiveness.
The rest of the paper is organized as follows: Section 2 introduces the basic principle of
gravity search algorithm. Section 3 describes the group path control of three-dimensional
animation based on improved GSA. Section 4 presents the experimental results and test
analysis. Section 5 concludes the paper.

2. Gravitational search algorithm.

2.1. Fundamentals of the Gravitational Search Algorithm. The Gravitational
Search Algorithm (GSA) is an optimization algorithm inspired by the law of gravity
as well as Newton’s second law [29]. The phenomenon of gravity is shown in Figure 1.
Similar to most intelligent algorithms, the GSA algorithm finds the optimal solution by
the regular movement of particles, the difference being that GSA’s particles move with the
help of gravity. During the generation selection calculation, the greater the fitness of the
particle, the heavier the mass of the particle and the greater the attraction. The smaller
the fitness of the particle, the less the mass of the particle, the less the attraction, and
the easier it is to be attracted to and moved by particles with larger masses. Thus, the
locally optimal particle of each generation has the heaviest mass and the greatest attrac-
tion. The massive particles attract other particles closer and move very slowly themselves.
As the algorithm is computed over many iterations, the small masses are pushed by the
gravitational force of the large masses until the particle position is output as the global
optimum when the convergence conditions are met.
The flow of the gravitational search algorithm is as follows [30].
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Figure 1. Gravitational phenomenon.

Step 1: Initialize the group: the position of each particle in the search space is as follows.

Xi =
(
x1i , · · · , xdi , · · · , xni

)
, i = 1, 2, · · · , N (1)

Where N is the number of particles, n is the dimension, and x denotes the position of
particle i in dimension d.
Step 2: Calculate the initial group fitness.
Step 3: Calculate the particle inertial mass M. The mass of a particle is defined by the
fitness mi(t).

mi(t) =
fit ti(t) + worst(t)

best(t)− worst(t)
(2)

Where: t is the current algebraic, fit ti(t) is the fitness of the particle, worst(t) and
best(t) are the minimum and maximum values of the fitness of the group respectively. To
simplify the calculation, the mass of the particle is normalized to the inertial mass.

Mi(t) =
mi(t)
N∑
j=1

mj(t)

(3)

Step 4: Calculate the acceleration of the particle a. From Newton’s second law, we need
to find the gravitational force between the particles first.

F d
ij(t) = G(t)

Mi(t)×Mj(t)

Rij(t) + ε

(
xdj (t)− xdi (t)

)
(4)

Where Mi(t), Mj(t) are the inertial masses of particle i and particle j respectively, ε is a
minimal constant, Mij(t) is the Euclidean distance between the two particles i and j, and
G(t) is the gravitational constant. The value of G(t) varies with the number of selected
iterations.

[G(t) = G0 × exp

(
−α× t

maxiter

)
(5)

Where α is the decay coefficient, G0 is the initial gravitational constant, and maxiter is
the maximum number of selected iterations. There is a gravitational ensemble between
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particles in the group.

F d
i (t) =

N∑
j=1,j 6=i

randjF
d
ij(t) (6)

Where randj is a random number in the interval [0,1]. Finally, according to Newton’s
second law, the particle acceleration is shown as follows.

adi (t) =
F d
i (t)

Mi(t)
(7)

Step 5: Update the particle position: The particle velocity and position update equations
are shown below.

vdi (t+ 1) = randi × vdi (t) + adi (t) (8)

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (9)

Step 6: Repeat the above steps until the end condition is met. The exact flow of the
gravitational search algorithm is shown in Figure 2.

Figure 2. The process of the GSA.

2.2. Shortcomings of GSA and improvement methods. Since GSA was proposed,
it has received a lot of attention from scholars due to its simple structure, few parameters
and strong convergence, etc. GSA has shown more excellent performance in the fields
of discrete optimization and deep learning. However, the gravitational search algorithm
suffers from the same shortcomings as other intelligent algorithms, such as the poor ef-
ficiency of finding the best and the tendency to fall into local optimality when solving
complex problems.
The initial group of GSA is simply generated using the rand function. If the deviation
between the particles of the initial group and the optimal solution is too large, it will



Animated group path control improved gravitational search 733

greatly increase the time for the particles to move towards the optimal solution, which
means that the convergence efficiency has a relatively large decrease. In order to improve
the traversal of the initial group particles, it is usually necessary to increase the number
of initial group particles, but this can seriously affect the efficiency of the operation.
To solve this problem, this work introduces a combined chaos strategy for the initial
group. By combining chaos algorithms, the traversal of particles can be effectively im-
proved while the number of group particles remains unchanged, thus improving the algo-
rithm’s optimisation-seeking efficiency to a certain extent.
The path of movement of particles in GSA is based on the attraction between particles.
The particles are relatively independent of each other and are updated in a fixed way
(lack of memorability). As the number of selected iterations increases, the search process
of the group slows down. Due to the cumulative effect of the fitness function on the mass,
the mass becomes larger during the selection process. At this point, if the global optimum
happens to be outside the local search range of the particle, then the particle will not be
able to escape the attraction of the local optimum and will attract other particles towards
it. In this case, the particle will end its movement prematurely and the search process will
stall (losing its global convergence). This is especially true when solving high-dimensional
complex optimisation problems, where the particles fall into the local optimum prema-
turely.
To address the above shortcomings, this work introduces an adaptive movement strat-
egy to improve the particle velocity update formulation based on adaptive theory. By
endowing the particle movement memory capability, the algorithm can improve the opti-
misation finding ability to a certain extent, and thus better escape from the local optimum
constraint.

3. 3D animated group path control based on improved GSA..

3.1. Research objectives and key issues. Due to this specificity of group behaviour,
the behavioural trajectories of individuals are required to be random and yet must be
consistent as a whole in order to ultimately produce naturalistic and realistic group ani-
mation effects. Therefore, the study of group path planning in 3D animation requires full
consideration of the following factors.

(1) Individuals in a group have their own area of movement and can avoid collisions
etc.

(2) The group is unified in the sense that each individual of the whole group moves in
the same direction or towards the same goal.

(3) Groups can be divided into multiple subgroups, which can self-organise into new
larger groups according to conditions.

(4) Enhancing realism. The trajectory of the individual is independent but also ensures
the unity of the whole, in line with the laws of group movement.

(5) Improve group co-ordination. Enhance group intelligence to increase group move-
ment speed.

3.2. Improved GSA algorithms based on chaotic adaptive theory. Common chaotic
mappings [31] are Logistic, Tent, ICMIC, Bernouilli shift, Chebyshev, Sine.
Logistic mappings are characterised by a high degree of traversal. In addition, the range
of values in the logistic mapping is concentrated at the two ends of the search range,
and the number of intermediate values is relatively small. The Tent chaos mapping is
characterized by a uniform distribution of the range of values in the search range and has
a good chaotic perturbation capability. Combining the advantages and disadvantages of
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the two chaotic mappings, this work uses a combined chaotic mapping based on Logistic
and Tent to implement the initialisation of the group, whose expression is shown as follow:

y0 = x0
if y0 < 0.5, ym+1 = 2y0
else ym+1 = 2 (1− y0)
tt = λx0 (1− x0) + |ym+1|
xm+1 = mod (tt, 1)

(10)

Where: x0 and y0 are the initial values of the particles, xm+1 and ym+1 are the updated
state values, tt is the state value to be updated, and λ is the logistic chaos coefficient. It
can be seen that if the chaos operation is introduced in the process of selecting the initial
values of the algorithm, it will increase the particle traversal and improve the convergence
speed of the algorithm to a certain extent. A random particle is generated and normalised
(the variable is converted to an equivalent value between 0 and 1). Combine the chaos
operations to generate the initial group and denormalise it. Calculate the initial group
fitness. Move particles and calculate fitness. Determine if the convergence condition is
met, if so output the global optimum, otherwise continue to move particles and calculate
fitness.
Adaptive means controlling the tendency of variables to change during the solution of a
problem according to their changing patterns, so that it has the ability to adjust dynami-
cally. The aim of adaption is to make the system optimal at any given moment. Adaptive
algorithms are algorithms that are made to perform better by dynamically adjusting var-
ious coefficients.
From the basic principles of the gravitational search algorithm, it is clear that the grav-
itational search algorithm uses purely particle interaction forces to update the velocity
formula. The particle update method is more fixed and lacks memorability. As the num-
ber of selected iterations increases, the search process of the group will become slower,
or even the search for the best stalls, especially when solving high-dimensional complex
optimization problems are prone to the above phenomenon. In order to solve the above
problems, this paper refers to the speed update method of PSO algorithm and introduces
the global optimal point to achieve speed update as follow:

Vi(t+ 1) = R× Vi(t) + c1 × ai(t) + c2 × (Gbest−Xi(t)) (11)

c1 = − t3

maxiter3
+ 1 (12)

c2 =
t3

maxiter3
(13)

Where Gbest is the global optimal point; c1 and c2 are the acceleration factors; and
maxiter is the maximum number of iterations to be selected.

3.3. The process of group path planning. To explore a wider range of positions, the
position of each particle is updated using equation (14).

x̂ι =
⇀
xι + randi(

1

6

∑
n∈Ni

⇀
xn) (14)

Where x̂ι is the new position of
⇀
xι. The new position can be found by calculating the

average of the six nearest neighbour positions.
Based on the above improvements, this paper proposes an improved gravitational search



Animated group path control improved gravitational search 735

algorithm based on chaotic adaptive theory. In the group initialisation phase of the grav-
itational search algorithm, the initial group diversity is improved by introducing combi-
natorial chaotic mappings. Enhancing particle traversal helps to improve the convergence
efficiency of the algorithm. The global optimal point is then combined with adaptive
theory to achieve adaptive velocity update of the particles. This approach gives the par-
ticles the ability to memorise, which further improves the convergence efficiency of the
algorithm as well as the optimisation finding ability. The process of group path planning
is shown in Table 1.

Table 1. The process of group path planning.

Flow of 3D animated group path control based on improved GSA
Inputs: sample group animation data Xi = (x1i , . . . , x

d
i , . . . , x

n
i ), 1 ≤ i ≤ N ; number of particles N .

Outputs: global best value Gbest.
Process:

Step 1: All nodes (agents) are randomly initialized at the beginning.
Step 2: Identify the six nearest neighbours to the data using Euclidean distances.
Step 3: Calculate the particle inertial mass M and acceleration a.
Step 4: Calculate the new position of each particle by using equation (6).
Step 5: The fitness function is used as the objective function to evaluate the fitness of each data.
Step 6: Calculate the quality of the nodes (agents) using the fitness function.
Step 7: Calculate the gravitational force and acceleration of each particle.
Step 8: Adaptive movement of particles to update their position by means of equation (11).
Step 9: Execute Step 1 if the stall occurs on a minimization.
Step 10: Collision between individuals occurs then Step 8 is executed;

Output the best particle with the smallest value of the objective function.

3.4. Collision detection and methods. To prevent collisions between individuals, a
random collision detection algorithm based on the enclosing box is used. The enclosing
sphere of a particle denotes the smallest outer sphere that surrounds the particle, as shown
in Figure 3.

Figure 3. Bounding sphere.

R = {(x, y, z)|(x− x0)2 + (y − y0)2 + (z − z0)2 < r2} (15)

Where (x0, y0, z0) denotes the centre of the sphere, which is obtained by calculating the
mean value of the coordinates on the particle.and r is the radius. Collision detection of
two particles can be judged by the intersection of the enclosing spheres, as follow:√

(x− x0)2 + (y − y0)2 + (z − z0)2 < r2 ≤ (r1 + r2) (16)



736 S. Liu, Y. Liu

Where (x1, y1, z1) and (x2, y2, z2) are the centres of the two enclosing spheres. r1 and r2
are the radii of the two enclosing spheres. If the sum of the radii is greater than or equal
to the centroid distance, then the two enclosing spheres have collided.
Collision avoidance uses the waitting method and the steering method. Waiting method
means that in the event of a potential side or rear-end collision, individuals will wait so
that a larger individual can pass first. The steering method means that in the event of
head-on, rear-end and side-on collisions, individuals can be steered into other collision-free
directions of movement.

4. Experimental results and analysis.

4.1. Experimental configuration parameters. In this work, the proposed group path
control algorithm is simulated on the Maya game engine. The hardware environment is
an Intel(R) CPU I3-12100F@4.3 Ghz processor, 128 GB of RAM, and AMD RX 7900
graphics card. The software environment is Maya 2017 and MATLAB R2016. Three
experiments are designed to verify the effectiveness of this algorithm: (i) Experiment 1,
simulation experiments of the standard test function of the improved GSA algorithm. (ii)
Experiment 2, the simulation experiment of path control of the improved GSA algorithm.
(iii) Experiment 3, the validation of the application effect of the improved GSA algorithm
under different group size conditions. Experimental parameters: number of particles
N=50, maximum iteration maxiter=1000, initial gravitational constant G0 = 1, α = 30,
acceleration constant c1 = c2 = 1.5.

4.2. Experiment I. The performance of the improved GSA algorithm was tested using
four classical test functions and compared with typical GSA [32] and OI-PSO [33].
Each function was run 20 times. For comparison purposes, the parameters used in the
GSA algorithm are the same as in the modified GSA. OI-PSO algorithm with inertia
weight minimum = 0.4, inertia weight maximum = 0.9 and acceleration constant = 2.
The four classical test functions are defined as shown in Table 2.

Table 2. Arguments to test functions

Function Type Expressions Search by
Theoretical

optimal
value

Sphere Function f(x) =
d∑
i=1

x2i [-80,80] 0

Ackley Function
f(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2i

)
− exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20 + e

[-20,20] 0

Griewank Function f(x) =
d∑
i=1

x2i
4000
−

d∏
i=1

cos
(
xi√
i

)
+ 1 [-250,250] 0

Rastrigin Function f(x) = 10d+
d∑
i=1

[x2i − 10 cos (2πxi)] [-4.06,4.06] 0

This experiment was run 30 times for each of the four test functions using the improved
IGSA, GSA and OI-PSO algorithms respectively, and the results of each optimisation were
recorded and averaged, retaining five significant digits, and the results are shown in Ta-
ble 3. It can be seen that the GSA algorithm is inferior to both the OI-PSO algorithm
and the Improved GSA algorithm in terms of convergence accuracy. the OI-PSO algo-
rithm outperforms the traditional GSA algorithm, but sometimes it still falls into a local



Animated group path control improved gravitational search 737

Table 3. Comparison of optimization results of test functions

Functions GSA [32] OI-PSO [33] Improving GSA

Sphere
Best value 2.0586e-1l 2.689le-17 5.3045e-21

Worst value 1.0589e-07 8.9612 e-16 3.9774e-19
Average value 4.5506e-08 1.8963e-16 5.7928e-20

Ackley
Best value 1.2952 1.5896e-07 5.5896e-10

Worst value 1.8411 9.5178e-06 8.5178e-09
Average value 1.6813 5.3189-07 1.3189e-10

Griewank
Best value 1.1546 0.13586 3.5468e-03

Worst value 3.8431 0.65685 1.2685e-02
Average value 2.3125 0.31584 8.3589e-03

Rastrigin
Best value 8.2685 3.2568 0.8321

Worst value 1.265 6.5874 1.2689
Average value 9.2168 5.2189 1.1326

optimum. The improved GSA algorithm has improved in accuracy compared with the
OI-PSO algorithm, and the optimal values of the improved GSA algorithm are better than
the other algorithms, with better performance in finding the optimal value. Therefore,
the proposed optimisation algorithm in this paper can show better search accuracy when
dealing with multi-dimensional function optimisation problems.
At the same time, to visually compare the algorithm seeking performance, a comparative
analysis of the execution efficiency of the above-mentioned algorithms was carried out.
The convergence curves of the three algorithms, as shown in Figure 4 to Figure 7.
It can be seen that compared to typical GSA and OI-PSO, the algorithm in this paper
takes the least time to obtain the optimal solution, which means the convergence speed
is the fastest. This is because the proposed algorithm inherits the powerful optimisation
capability of the GSA algorithm, while introducing a combined chaotic mapping to per-
turb the initial group and guiding the particles to update the speed formula adaptively
with the help of the global optimal point Gbest, thus improving the efficiency and accu-
racy of the optimisation search. A comprehensive analysis shows that the improved GSA
algorithm enhances the search speed while ensuring the global optimisation capability.

Figure 4. Sphere function Figure 5. Ackley function
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Figure 6. Griewank function Figure 7. Rastrigin function

4.3. Experiment II. Improved GSA algorithm for path control simulation experiments.
Firstly, this work meshes the virtual scene, setting the starting point, the end point and
the obstacle locations. Then, the improved GSA algorithm is used to generate editable
paths. The simulation results of the path generation before and after the improvement
are shown in Figure 8 to Figure 11.

Figure 8. Path 1 generated by
GSA

Figure 9. Path 1 generated by
improved GSA

Figure 10. Path 2 generated
by GSA

Figure 11. Path 2 generated
by improved GSA
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It can be seen that the group path control algorithm proposed in this work is able to
solve the problems of folded lines, large deflection angle and unsmoothness in the paths
well.

4.4. Experiment III. Validation of the application of the improved GSA algorithm
under different group size conditions.
In order to demonstrate the effectiveness of the group path control algorithm for group
animation applications, this work verifies the effectiveness of the improved GSA algorithm
for different group sizes, and the simulation results are shown in Table 4.

Table 4. Comparison of optimization results of test functions

Group
size

Initial
speed/ms−2

Path
length/m

Group average speed at
obstacle point/ms−1

Number of
collisions

Time/ms

100 1 100 1.00 2 6.79
500 1 100 0.90 5 6.83
1000 1 100 0.86 7 6.86

It can be seen that groups of different sizes plan the same path and have the same
pathfinding time. The larger the group size, the greater the group density at the obstacle
point, resulting in an increase in the number of collisions (resulting in motion blockage).
However, the improved GSA algorithm reduces the average group speed during obstacle
avoidance and effectively reduces the number of collisions. From the experimental results,
it can be seen that the group path control algorithm proposed in this work is intelligent
and efficient.

5. Conclusion. In this paper, an improved GSA algorithm based on chaos adaptive
theory is proposed and applied to group path control in 3D animation. Firstly, a com-
binatorial chaos mapping is used to generate the initial group for the group behavioural
characteristics and to improve the group diversity. Secondly, an adaptive movement
strategy is used to improve the particle update formula to enhance the ability of the grav-
itational search algorithm to jump out of the local optimum, laying a better foundation
for the subsequent group animation path planning. Then, real-time collision detection
and collision avoidance methods are introduced to solve the individual collision problem.
Finally, the path data is imported into Maya software for group motion simulation tests.
The results of the standard function tests in the experimental part show that the algo-
rithm proposed in this paper is advanced, and the animation example tests prove the
feasibility of the algorithm. In the future, a perceptual model will be added to the an-
imated examples to add emotional conditions for each individual, which could improve
the behavioural fidelity generated by group path planning, and therefore further research
will follow to address this aspect.
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